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ABSTRACT

A simple analytical model for varactors that have a
symmetric capacitance-voltage characteristicis introduced. This
empirical but general model can be used to represent the
reactance nonlinearity of quantum-barrier varactors, symmetric
high-electron-mobility varactors and back-to-back BNN*
diodes. Using this model, a generalized large-signal analysis
of symmetric-varactor triplers is developed. The analysis
yields an expression for the maximum efficiency. It is further
shown that a series-resonant circuit including a symmetric
varactor can be described by Duffing’s equation. The solution
of this equation predicts hysteresis effects.

INTRODUCTION

New classes of varactors having symmetrical
capacitance-voltage [C(v)] characteristics are under
development [1,2,3]. They include the symmetrical quantum-
barrier varactor (5-QBV), the symmetric high-electron-mobility
varactor (S-HEMV), and the back-to-back barrier-n-n* (bb-
BNN") varactor. Because they display their maximum
nonlinearity near zero bias, these devices are promising as
efficient triplers at millimeter-wave frequencies where source
power is at a premium. The prediction of the maximum
possible optimized efficiency of of such triplers has not
previously been reported, primarily because of the lack of a
simple analytical model. This paper presents such a model,
and uses it to predict the maximum performance of symmetric-
varactor triplers. It is further shown that when the new model
is embedded in a simplified series-resonant tripler circuit, the
behavior is described by the classical Duffing equation [4], and
that the solution shows jump phenomena, typical of nonlinear-
reactance circuits.

THE DEVICE MODEL

The device model consists of a nonlinear capacitor in
series with a loss resistance R, representing the combined
effects of

(a) The skin-effect resistance

(b) The contact resistance

(c) The resistance of the undepleted epilayer. We
propose the following general empirical charge-voltage model
for all the symmetric C(v) varactors:
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where v is the potential across the varactor (excluding R,) and
q is the charge associated with the varactor depletion region.
In terms of normalized variables, (1) becomes simply

y = z+p2*. 2)

where y = aw and z = q/g,. The parameters o, § and g, can be
adjusted to fit the g-v relation (1) to the measured
characteristics of an arbitrary symmetrical C(v) varactor. From
(2) one can find the following explicit C(v) relation to be fitted
to measured data:

y = o = 21+ By @)
where
- L)L @)
38 (Clo) '

Figure 1 shows the C(v) of a S-QBV calculated from the
approximate expression [5]
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Figure 1. The theoretical symmetric quantum barier C(v)
characteristic compared with the proposed model. The
fitting parameters are set to a = 2.2 and g = 3.2,
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where ¢ is the dielectric constant, A is the device area, w is the
effective barrier thickness, ¢ is the magnitude of the electron
charge, N, is the doping density of the depletion region, and
v, is the portion of the applied v that appears across the
depletion region. The rest of v is divided between the QBV
accumulation and barrier regions. In the case illustrated A =
70 (um)?, C,.. = C(0) = 300 fF, and C,,. = C(v = 2 V) = 50 fF.
The figure also shows the C(v) according to the present model,
with the fitting parameters set to o = 2.2 and § = 3.2. This
device is ideally suited for application in a low-power
frequency tripler. Most of the device nonlinearity is
concentrated in the vicinity of zero bias. For |v| greater than
~2.0V the reactance nonlinearity is slight, and the conduction
current of the device starts to increase, lowering its Q.

ANALYSIS OF FREQUENCY TRIPLERS

Triplers using S-QBVs and bbBNN * varactors have been
reported [1,2]. Previous analyses were numerical and
employed the harmonic-balance (HB) technique. In S-QBV and
S5-HEMV devices the very strong C(v) nonlinearity around zero
bias can lead to numerical instability in HB simulations.
Furthermore, HB simulations are computer intensive and do
not easily offer insights into the performance of the device in
a tripler circuit.

A simple large-signal analysis of classical abrupt-
junction pn-junction varactors in terms of a g-v model has been
given by Tang [6]. The analysis given here follows Tang's
approach. The device equivalent circuit consists of a series
combination of C(v) and R. The tripler equivalent circuit in
Fig. 2 consists of the symmetrical varactor model placed
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Figure 2. Tripler circuit model for analysis.

between ideal band-pass filters at angular frequencies ® and
3w. The source and load impedances are Z; and Z,
respectively. The total current flowing through the varactor
diode is

i = I cos(wt) + I cos(3uwt) (6)

while the normalized charge associated with its depletion layer
is
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In the ideal case of perfect g-v antisymmetry described by (1),
the average charge is zero. The input power at w is assumed
to be sufficiently low that the diode is not driven to its
breakdown voltage V. Substituting (7) into (2) the normalized
voltage y across the lossless ideal C(v) element can be found.
This voltage has third, fifth, seventh and ninth harmonics (but
no higher-order terms):

y = av = Ycos(t-T) + Y,cos(3t-C,) +... (8)
where T = wt, and Y, and {, are amplitudes and phases to be
determined. Imposing the circuit conditions one finds the

following equations:

Y, cost, = —%BZfZ;inG 9
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where Z, and Z; are the amplitudes of the normalized
fundamental and third-harmonic charge components.

Defining the constraints to be (a) fixed input power P
supplied to the nonlinear C(v) element (i.e. not including R)),
and (b) minimum dissipation with respect to I, the
optimization condition is found to be

1/4
- qove| P - 13)
I = (12 (m) V3L
where
B
= — 14
4 ofooqy)? 4

The tripler efficiency is

1

P - _I’R
power output _ 2° ¢ (15)
power input P+ %IIZRS

Substituting the optimization condition (13) into (15), the



efficiency is

{63 (PMsin6)”* - R,

n = . (16)

{63 (PMsin6)’* + 3R,

The maximum efficiency occurs when the phase angle is 8 =
90°. This is also the condition for minimum dissipation.
The input and output impedances are found to be

1 1

z, = (? cost, + RS) +j [.‘T/E sint_,]) 17)

_V3
Z = [I cos(G, - 6) - R,

3

. —Vs .
+] i Slrl(c,3 - 0)}.(18)
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It is interesting to note that the real parts of the input and load
resistances are related by

= (19)

The maximum efficiency of a tripler using a symmetric
quantum-barrier varactor with the C(v) characteristic denoted
"present model" in Fig. 1 is plotted in Fig. 3. The large-signal
cutoff frequency can be found from the Penfield and Rafuse
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Figure 3. Comparison of the maximum efficiency of a 5-
QBV tripler (with o = 2.2, B = 32) with that of a
conventional abrupt-junction tripler using a short-circuit
idler.
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definition {7} f, = 1/(2«RC,,;). Using C,,, = 50 fF and R, = 10
Q one obtains f, = 318.8 GHz. In Fig. 3 the efficiency of the S-
QBV tripler is compared with that of a classical abrupt-junction
tripler [7] using a short-circuit idler at the second harmonic.

Other relevant design information can be calculated
from the above analysis, and is listed in Table I for for a tripler
from 30 to 90 GHz.

Table I: Data for an S-QBV tripler from 30 to 90 GHz
with a =2.2 and § = 3.2

P, n Py X R, X,

8.0 33.13 2.65 19.93 -73.15 19.84 40.52
mWwW % mwW Q Q Q Q

R,

m

Since most of the device nonlinearity is concentrated around
zero bias voltage, only a small input RF power is needed to
modulate (pump) that nonlinearity. The fundamental-
frequency voltage across the C(v) element found to be 2.1 V.
The calculated efficiency somewhat overestimates reality
because the present theory does not include the effect of I'-X
transfer current in the QBV [5].

DUFFING’S EQUATION
Consider a varactor device defined by the charge-

voltage representation (1) to be embedded in the series-
resonant circuit of Fig. 4. Here R can be considered a
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Figure 4. A symmetric varactor embedded in a series-
resonant circuit,

combination of R, and R,. It can be shown that the differential
equation describing the circuit is

o

z+ tz +z + Pz® = Xcos(vr) (20)

where { = R/(w,L) is a damping term, o, = 1/V[LC(0)], T = oy,
X = aV is the amplitude of the forcing function, ® = d/dx, and
v = w/w, This differential equation is the well-known
Duffing’s equation [4], approximate solutions of which have
been described in the mathematical literature {7,8] for small

values of the parameters 8, £, and X. Assuming a normalized-
charge solution

z = Z,cos(3vt - y) + Z, cos(vr) 21)



and using the method of multiple scales [8] a solution can be
found for the normalized third-harmonic charge amplitude
Zs:

2

X

Z2+ [13v -1 -3p|——
ﬁ2(1—\'2)

3

3
z, - 823

6

X
2(1 -v3

2 (22)

The frequency-response diagram of Fig. 5 shows Z; as a
function of the normalized input frequency v. Examination of
this curve shows the onset of a jump phenomenon, a common
occurence with nonlinear-reactance circuits.
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Figure 5. Amplitude of the normalized third-harmonic
varactor charge as a function of the input frequency, as
given by the solution of Duffing’s equation for 8 = 0.1, ¢ =
0.1, X = 1.5, Note that the frequency at the peak is far
frorn v = 1/3 because of the rapid decrease of average
capacitance under pumped conditions. Also note the
onset of hysteresis.

CONCLUSION

We have proposed a simple mathematical nonlinear
model that can be used to represent a variety of different types
of varactor exhibiting symmetric C(v) characteristics.

We have employed this model to carry out a closed-
form large-signal analysis of a frequency tripler circuit. The
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results show that the optimized efficiencies at low input power
levels are greater than those possible for conventional varactors
having similar cutoff frequencies and breakdown voltages.
The new model, suitably augmented with parasitic elements to
more closely represent real symmetric varactors, can be used
in computer-aided design programs.

We have further demonstrated that when the new
model is embedded in a prototype series-resonant tripler
configuration, the circuit obeys Duffing’s equation, and that the
solution shows jump phenomena, typical of nonlinear-
reactance circuits.
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